

International Radiation Protection Association 11th International Congress Madrid, Spain - May 23-28, 2004

Refresher Course

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Emergency and Post Accident Management Neale Kelly and Carlos Rojas Palma

 Improvements and developments in the past decade

- in particular in Europe

- Major challenges and action needed
 - main conclusions of a recent international symposium on Emergency Management

Major improvements and developments

- RODOS decision support system
- Source term estimation
- Assimilation of model predictions and measurements.
- Evaluation of countermeasures.
- Stakeholder involvement
- Management of contaminated environments
- Data and information exchange

Decision support systems (DSS)

DSS support

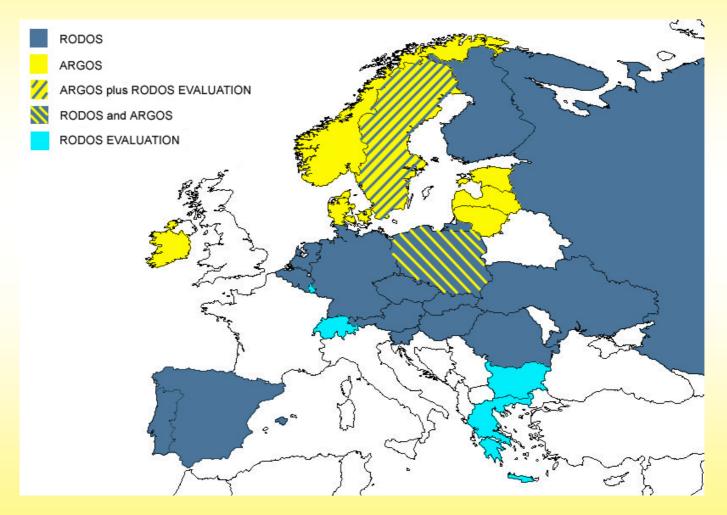
- policy development
- emergency preparedness arrangements
- actual emergency response
- Major improvements in past decade
 - advances in informatics and communications

RODOS

- comprehensive and broadly applicable
- state of the art, developed with EC support
- will contribute to more coherent response

RODOS DSS

- Applicable anywhere subject to customisation
- Applicable to all stages of an accident
 - threat or pre-release phase
 - release and post release phases
 - long term management and restoration of contaminated areas
- Implementation in emergency centres
 - pre- or operational use in B, SF, D, H, NL, PL, P, SK, ES, UA
 - being installed in AT, CZ and SI
 - foreseen for installation in RO, RF and BU
 - under consideration in SE, LU and CH


ARGOS DSS

- Initially designed with limited functionality

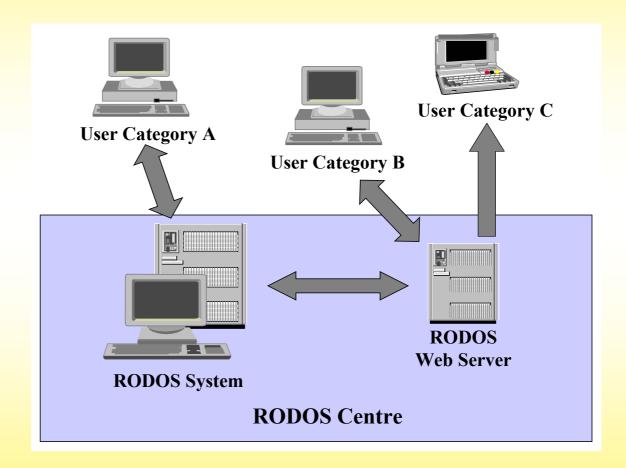
 collection/processing environmental monitoring data
- Functionality progressively being extended
 by integration of RODOS products
- Implementation in emergency centres
 - pre- or operational use in DK, ES, LV, LT, NO, IE, CAN
 - under consideration in SE

RODOS & ARGOS in Europe

RODOS key features

Inputs

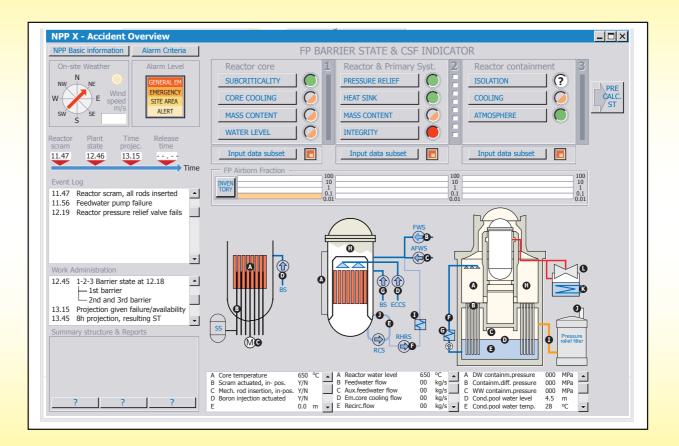
- release to the environment
 - directly from measurements
 - indirectly from plant status
- prevailing and forecast meteorological conditions
- prevailing and forecast conditions of water bodies and their catchments
- measurements in the environment


RODOS key features cont'd

OUTPUTS

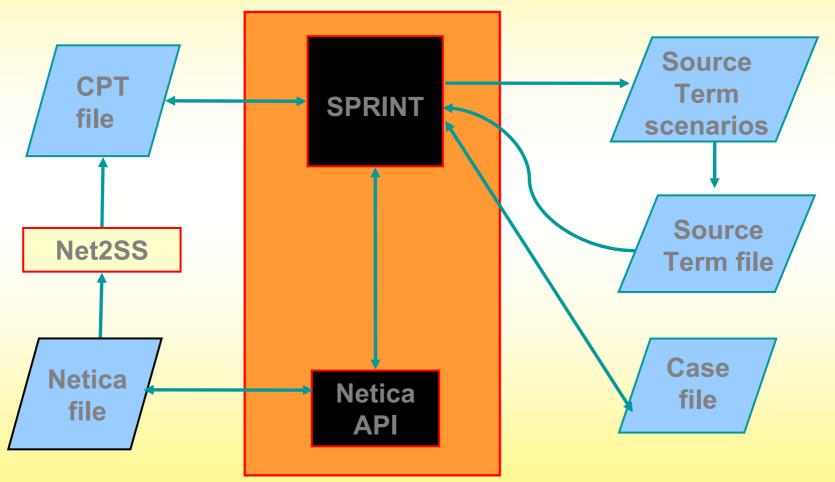
- Dispersion of radioactive material in time and space
- Contamination of foodstuffs, buildings, water bodies, etc
- Exposures of the population and potential health effects
- Impact of countermeasures
 - economic and social costs
 - averted doses
- Effective communication with other users and systems
- Evaluation system to assist decision makers choose between alternative countermeasure strategies.

RODOS – user interaction



Source term estimation

- Based on plant status and its prognosis
- Applicable pre- and post- release
- Major progress in past decade
 - Two modules that can be interfaced with RODOS or other DSS
 - ASTRID deterministic approach
 - STERPS probabilistic approach

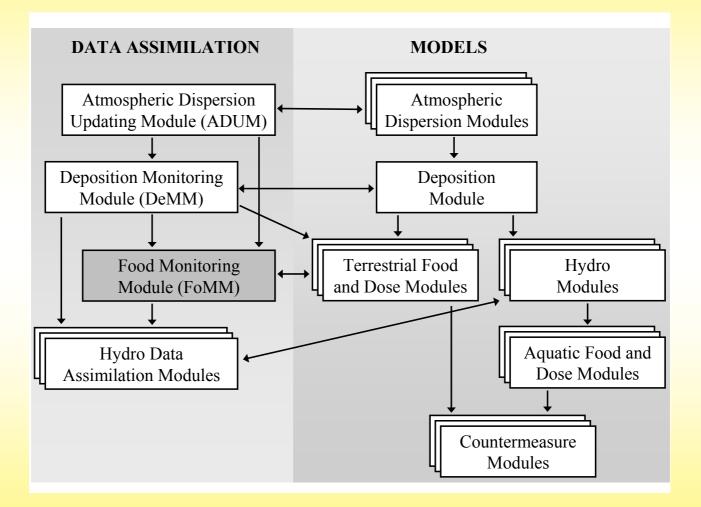


The ASTRID user interface

STERPS: A probabilistic approach to source term estimation SPRINT Software Architecture

"Data" Assimilation (DA)

- DA assimilation of measurements, predictions, expert judgement, etc, to better inform decisions
- Essential to:
 - resolve conflicts between predictions and measurements
 - improve quality of predictions where no/few measurements exist
- Critical feature of well conceived and functional DSS
 - but not present in many DSS



DA in RODOS

- Uses the Kalman filter technique
- Applied to atmospheric, food and hydrological transfers
- Accounts for uncertainties in predictions and measurements as well as expert judgement
- Operates in real time
- Uncertainties transferred between model chains

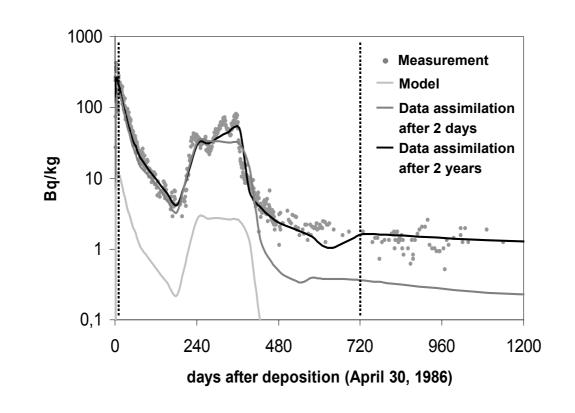
DAONEM cont'd

IRPA

Data assimilation in the late phase

Two separate modules

Deposition


 progressively updates predictions of deposition (over time and space) based on available measurements of gamma dose rate and concentrations on plants

Food Chain

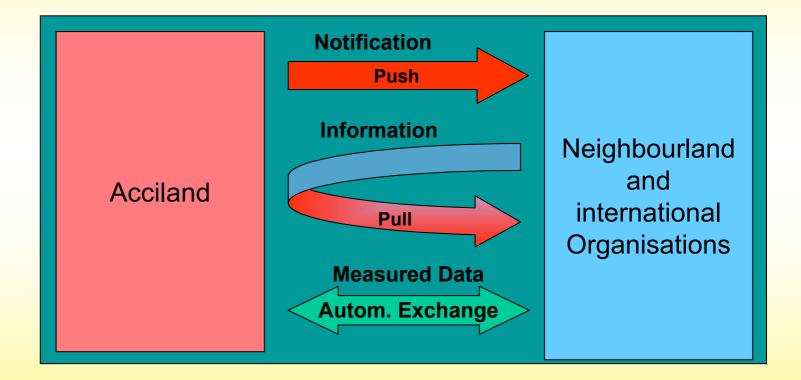
 progressively updates predictions of of concentrations in feed- and foodstuffs (over time and space) based on available measurements of these quantities

Data assimilation based on ¹³⁷Cs activity concentration in milk after the deposition from the Chernobyl accident

Evaluation of countermeasure strategies in RODOS

- Enable decision makers to make informed choices on countermeasures
 - important for development of policy and emergency arrangements and for actual response
- Achieved through use of the ESY sub-system
 - uses multi attribute techniques
 - ranks countermeasure options subject to decision makers' values and preferences
 - accommodates broad range of inputs, eg, doses, risks, costs, social and political impacts, anxiety, etc

attributes that might be considered as relevant to decisions in the early phase of a nuclear emergency



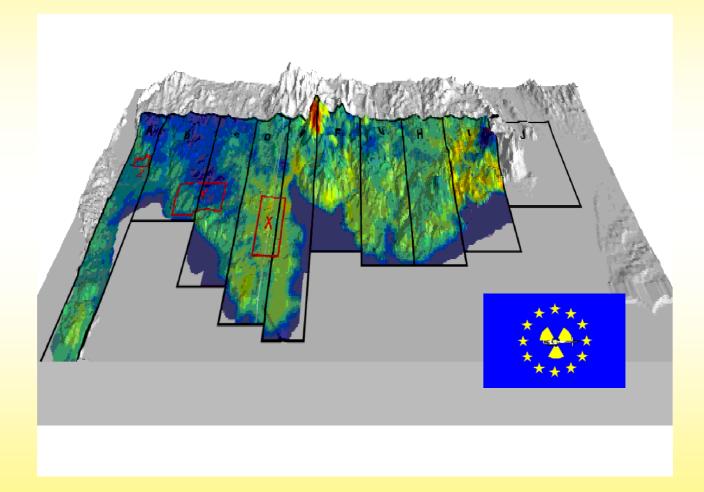
Information exchange - MODEM project

- Develop a platform independent communication system between existing DSS
 - using state of the art internet technology
 - enable prompt and effective transfer of diverse information
- Complement existing operational systems
 - provide direct communications on a common basis between linked DSS in different countries.

MODEM concept

MODEM

- Combines messaging and web services to notify and populate contents on web servers
- Rapid and semi-automated to exchange data and information and to visualize other DSS results.
- Successfully connected RODOS (EU), ARGOS (DK) and RECASS (RF)
- Extend in the future to the US, CAN and JP



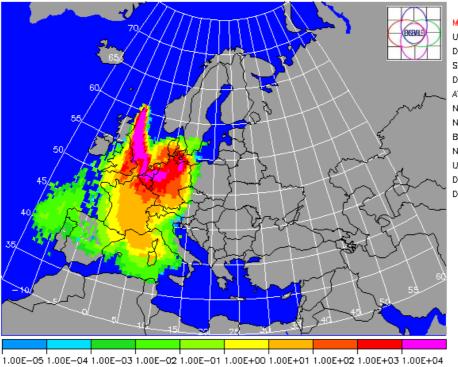
Airborne monitoring

- Rapid characterisation of deposition
 - critical for effective post accident management
 - public reassurance
- European capability, pre-Chernobyl, limited but major advances since
- Capability demonstrated in RESUME exercises
 - most recently with joint mapping of deposition in Southern Scotland in real time
- Opportunities to enhance capability through deeper integration

Dose rate map from Southern Scotland

ENSEMBLE - harmonisation of long-range atmospheric dispersion forecasts

- Major differences in forecasts of national meteorological services
 - may cause differences in response
 - source of public concern and confusion
- ENSEMBLE aims to better inform the decision process
 - demonstrates the degree of coherence/divergence of forecasts
- ENSEMBLE is
 - a web based tool to compare forecasts in real time
 - exercised frequently involving > 20 forecasting organisations
 - being further developed



ENSEMBLE cont'd

Exercise 01 - Agreement on percentile threshold for time-integrated concentration in Bqh/m^a Date and time: 2001-04-21 00:00 UTC (+60h0m after release start) Percentile threshold = 90%

Release info:

Location: 01:10 W 60:09 N Start: 2001–04–18 12:00 UTC Duration: 6 hours

Model(s) [delta meteo/delta upload]

UK1 [+60h0m/+4365h39m] DK1 [+60h0m/+122h5m] SE1 [+60h0m/+118h1m] DE1 [+60h0m/+116h37m] AT1 [+60h0m/+377h15m] NL1 [+60h0m/+136h13m] BE1 [+60h0m/+4368h13m] BE1 [+60h0m/+216h14m] NL2 [+60h0m/+118h54m] US1 [+60h0m/+4h18m] DK4 [+60h0m/+123h57m] DE2 [+60h0m/+116h39m]

Projection: LambertAzimuthal Created by user tmikkelsen on 2002-03-08 14:24:07 UTC

Stakeholder involvement

- FARMING Agriculture and food
 - stakeholder panels in several EU countries to establish more practicable, cost effective and broadly acceptable countermeasures
- EVATECH Urban areas
 - facilitated workshops held in several EU countries with a broad range of stakeholders to establish more practicable, cost effective and acceptable countermeasures for contaminated urban areas

Long term management and rehabilitation of contaminated areas - ETHOS project

- Novel "bottom up" and more inclusive approach to improve conditions in contaminated areas
 - population taking greater responsibility for its actions
 - production of less contaminated food
 - social and economic improvements
- Responding to earlier failures caused by:
 - the development of a dependency culture
 - highly centralised approach

ETHOS cont'd

- Implemented initially in one settlement,Olmany
- Extended to several villages in Stolyn district
- Approach adopted as important element of Belarus policy for sustainable redevelopment of contaminated areas
- Approach now being rolled out to several regions in Belarus under the CORE project
 - with support from several European countries and international organisations

Major Challenges

- Intervention levels
- Role of radiation protection
- Stakeholder involvement
- Preparedness and exercising for the late phase
- Rehabilitation and long term management
- Regional co-operation and mutual assistance
- Maintaining competence
- Malevolent uses
- Research and development

Intervention Levels

Issue

- Broad international agreement on principles
- Major differences in IL/DIL adopted nationally
- Will cause major problems, post accident

- Identify reasons for differences
- Evaluate opportunities for greater harmonisation
- Inform the political process

Role of Radiation Protection

Issue

- Historically RP has taken a leading role
- Is emergency and post accident management:
 a social problem with RP inputs or
 an RP problem with social inputs
- More enlightened have recognised that it is the former but practice has been otherwise

Role of Radiation Protection (cont'd)

- Revisit guidance on emergency and post accident management
- Incorporate a broader range interests (stakeholder involvement)
- Learn from projects such as FARMING, STRATEGY and EVATECH and practical experience post Chernobyl and elsewhere

Stakeholder Involvement

Issue

- Arrangements have had a long gestation and largely determined by "technologists"
- In general, little broader stakeholder involvement
 Action needed
- Review extent to which views and needs of stakeholders are reflected in arrangements
- Initiate more inclusive and sustainable process
 where potentially important deficits identified

Preparedness and Exercising for Post Accident Management

Issue

 In general, rudimentary and much less frequent compared with emergency phase

- Enhance detailed level of planning and preparedness
- Radically increase frequency and the nature of exercises
- Need to address:
 - management of contaminated agricultural land and inhabited areas and
 - interfaces between changing lead organisations

Rehabilitation and Long Term Management

Issue

- Undue focus on "narrow" radiological issues is misguided and has led to failure
- Not addressing broader issues (eg, social, cultural, ethical, political, environmental, etc) can only lead to failure
- Nature and importance of the problem not broadly recognised among the radiological and decision making communities

Rehabilitation and Long Term Management (cont'd)

- Develop shared understanding of issues
- Develop framework that can assist authorities in establishing policy, with guidance on application
- Demonstrate efficacy of framework and its related guidance
- Disseminate the framework widely and promote its use
- Develop and maintain international competence

Regional Co-operation and Mutual Assistance

Issue

- Fewer resources in future

 even maintaining status quo will be difficult
- Regional cooperation could lead to better resource allocation and more integrated response
 - but resistance due to some loss of autonomy
- Mutual assistance arrangements in place
 - but add-ons to, and rarely an integral part of, national arrangements

Regional Co-operation and Mutual Assistance (cont'd)

- Evaluate merits of, and impediments to, regional approaches (particularly in Europe)
- Potential greatest for:
 - regional emergency centres, decision support systems
 - airborne gamma monitoring, mobile and personal monitoring
 - biological dosimetry, treatment of highly exposed individuals, etc
- Better integrate mutual assistance into national arrangements
- Important progress in Central Europe a stimulant for cooperation elsewhere
 - coordination around RODOS DSS and EURANOS project

Maintaining Competence

Issue

- Declining competence
 - due to maturity of the nuclear industry
 - ageing of the workforce
 - moratoria on new nuclear build in many countries
- Exacerbated (in Europe) due to large increase in resources post Chernobyl
- Situation worse for late phase
 - emergency arrangements are an integral part of plant operation/licensing

Maintaining Competence (cont'd)

- Problem well recognised but less clear how it should be resolved. Possible actions include:
 - achieving critical mass through collaboration at regional or international levels
 - regional/international task forces on particular topics
 - eg, airborne gamma monitoring, waste management, monitoring special nuclides, etc
 - mapping competence
 - education and training
- Solutions will require political accords

Malevolent Uses of Radioactive Material

Issue

- Arrangements largely developed for fixed installations
 - additional demands when location of source unknown

- Review adequacy of existing arrangements for response to malevolent uses
- Identify any major deficits and rectify
 - particular attention to be given to the diversity of sources and how they may be used

Research and Development

Issue

- Most research has a largely technical focus
 - but many of the challenges have a social or political as opposed to technical origin

- Ensure that research agendas remain responsive to the most pressing needs
- Initiatives to increase participation of the social humanitarian, management and political sciences in problem definition and resolution

